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Abstract: For square contingency tables with ordered categories, we decompose the symmetry model into three models; i.e., the
palindromic symmetry, the marginal means equality, and the cumulative subsymmetry models. The palindromic symmetry model is
also decomposed into the generalized palindromic symmetry and the extended marginal homogeneity models. The decompositions are
applied to the unaided vision data.
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1. Introduction

For an R×R square contingency table with the same row
and column classifications having ordered categories, let
pij denote the probability that an observation will fall in
the ith row and jth column of the table (i = 1, . . . , R; j =
1, . . . , R). The symmetry (S) model is defined by

pij = pji (i �= j);

see Bowker (1948), and Bishop, Fienberg and Holland (1975,
p. 282). Caussinus (1965) gave the decomposition of the S
model into the quasi-symmetry model and the marginal
homogeneity model (although the details of models are
omitted). McCullagh (1978) gave the models of asymme-
try, namely, the conditional symmetry, the palindromic sym-
metry (PS), and the generalized palindromic symmetry (GPS)
models.

Let

Gij =
i∑

s=1

R∑
t=j

pst (i < j),

and

Gij =
R∑

s=i

j∑
t=1

pst (i > j).

The S model may be expressed as

Gij = Gji (i �= j).

The PS model is defined by

Gij

Gji
= Δ

γi

γj−1
(i < j),

where we may set, e.g., γ1 = 1 without loss of generality.
A special case of this model obtained by putting Δ = 1
and γ1 = . . . = γR−1 = 1 is the S model. Also, a special
case of this model obtained by putting γ1 = . . . = γR−1 =
1 is the conditional symmetry model. The PS model with
Δ replaced by Δi is the GPS model. Note that Tomizawa
(1989) gave the decompositions of the conditional symme-
try model using the PS model.

If the S model holds, then the PS model holds; how-
ever, the converse does not always hold. Thus we are in-
terested in what structure is necessary in addition to the PS
model to obtain the S model. The PS model is divided into
two structures, as

Gij

Gji
= Δ (i < j; j = i + 1),

and
Gij

Gji
= Δ

γi

γj−1
(i < j; j �= i + 1).
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Therefore we are interested in considering the decomposition of the S model using a model which indicates the
structure of {Gij} with |j − i| = 1 and a model which indicates the structure of {Gij} with |j − i| �= 1, in addition to the
PS model.

The purpose of the present paper is to give such decomposition of the S model using the PS model.
2. Decompositions of the S model
Let X and Y denote the row and the column variables, respectively. Consider the marginal means equality (ME)

model as E(X) = E(Y ). Let pi· =
∑R

t=1 pit and p·i =
∑R

s=1 psi (i = 1, . . . , R). We see E(X) =
∑R

i=1 ipi·
=

∑R
s=1

∑R
t=s pt·

=
∑R

s=1

(
1 − FX

s−1

)
= R − ∑R−1

i=1 FX
i , where FX

i = P(X ≤ i). Similarly, we see

E(Y ) = R −
R−1∑
i=1

FY
i ,

where FY
i = P(Y ≤ i). Thus we see E(Y) - E(X) =

∑R−1
i=1 FX

i − ∑R−1
i=1 FY

i

=
∑R−1

i=1 Gi,i+1 −
∑R−1

i=1 Gi+1,i.
Therefore the ME model may be expressed as

R−1∑
i=1

Gi,i+1 =
R−1∑
i=1

Gi+1,i.

This indicates the structure of {Gij} with |j − i| = 1.
On the other hand, as a model which indicates the structure of {Gij} with |j − i| �= 1, Tomizawa, Miyamoto and

Ouchi (2006) proposed the cumulative subsymmetry (CSS) model as

Gi,i+2 = Gi+2,i (i = 1, . . . , R − 2).

We now obtain the following theorem.
Theorem 1. The S model holds if and only if all the PS, ME and CSS models hold.
Proof. If the S model holds, then all the PS, ME and CSS models hold. Assume that all the PS, ME and CSS models hold,
and then we shall show that the S model holds. We see from the PS model that

Gi,i+1

Gi+1,i
= Δ (i = 1, . . . , R − 1),

and from the ME model that

R−1∑
i=1

Gi,i+1 =
R−1∑
i=1

Gi+1,i.

Therefore we obtain Δ = 1. Thus we see from the PS model that

Gi,i+2

Gi+2,i
=

γi

γi+1
(i = 1, . . . , R − 2).

Therefore we see from the CSS model that

γ1 = γ2 = . . . = γR−1 = 1.

Thus the S model holds. The proof is completed.
By the way, Tomizawa (1984, 1989) considered an extended marginal homogeneity (EMH) model, which is equivalent

to

Gi,i+1

Gi+1,i
= Δ (i = 1, . . . , R − 1).

It is easily seen that the PS model holds if and only if both the GPS model and the EMH model hold. Therefore we also
see the following theorem.
Theorem 2. The S model holds if and only if all the GPS, EMH, ME and CSS models hold.

3. Goodness-of-fit test
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Let nij denote the observed frequency in the (i, j)th cell of the R×R table (i = 1, . . . , R; j = 1, . . . , R). Assume that
a multinomial distribution applies to the R×R table. Each model can be tested for goodness-of-fit by, e.g., the likelihood
ratio chi-squared statistic (denoted by G2) with the corresponding degrees of freedom. The G2 is given by

G2 = 2
R∑

i=1

R∑
j=1

nij log
(

nij

m̂ij

)
,

where m̂ij is the maximum likelihood estimate of expected frequency mij under the model. For {m̂ij} and the degrees
of freedom for each model, see the corresponding literature.

4. An example
Consider the vision data in Table 1. [These data have been analyzed by many statisticians, including Stuart (1955),

Bishop et al. (1975, p. 284), McCullagh (1978), Goodman (1979), Tomizawa (1987, 1993), Tomizawa et al. (2006),
Tomizawa and Tahata (2007), and Yamamoto and Tomizawa (2012).]

Table 2 gives the values of the likelihood ratio chi-squared statistic G2 for each model.
Each of the S, GPS and ME models fits the data in Table 1 poorly. Each of the PS, EMH and CSS models fits these

data well; especially, the EMH model fits these data very well.
We can see from Theorem 1 that the poor fit of the S model is caused by the influence of the lack of structure of the

ME model rather than those of the PS and CSS models. In addition, we can see from Theorem 2 that the poor fit of the S
model is caused by the influence of the lack of structure of the GPS and ME models rather than those of the EMH and CSS
models. [For the interpretations of the EMH and CSS models applied to these data, see Tomizawa (1987), and Tomizawa
et al. (2006), respectively.]

5. Concluding remark
As seen in Example, Theorems 1 and 2 would be useful for seeing the reason for the poor fit of the S model when

the S model fits the data poorly. Especially Theorem 2 rather than Theorem 1 is more useful for seeing the reason in the
details.

The decompositions obtained in Theorems 1 and 2 should be used to analyze square contingency tables with ordered
categories because each of decomposed models is not invariant under arbitrary same permutation of the categories of rows
and columns.

Table 1
Unaided distance vision of 7477 women aged 30-39 employed in Royal Ordnance factories in Britain from 1943 to

1946; from Stuart (1955).

Right eye Left eye grade
grade Best (1) Second (2) Third (3) Worst (4) Total

Best (1) 1520 266 124 66 1976
Second (2) 234 1512 432 78 2256
Third (3) 117 362 1772 205 2456
Worst (4) 36 82 179 492 789

Total 1907 2222 2507 841 7477

Table 2
Likelihood ratio chi-square values for models applied to the data in Table 1.

Applied Degrees of Likelihood ratio
models freedom chi-square
S 6 19.249*
PS 3 6.240
GPS 1 6.180*
EMH 2 0.005
ME 1 11.978*
CSS 2 5.001
∗ means significant at the 0.05 level.
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